软件世界网 购物 网址 三丰软件 | 小说 美女秀 图库大全 游戏 笑话 | 下载 开发知识库 新闻 开发 图片素材
多播视频美女直播
↓电视,电影,美女直播,迅雷资源↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
移动开发 架构设计 编程语言 Web前端 互联网
开发杂谈 系统运维 研发管理 数据库 云计算 Android开发资料
  软件世界网 -> 云计算 -> 最小二乘法求AR模型 -> 正文阅读
云计算 最新文章
CentOS7上安装Zabbix(快速安装监控工具Zab
十分钟搭建NeuralStyle服务
solr入门之拼写纠错深入研究及代码Demo
3个netty5的例子,简单介绍netty的用法
RedhatOpenshift云平台注册使用
Akka框架——第一节:并发编程简介
Hadoop实战:Linux报tmp磁盘存储不足
linux安装thrift
感觉快更快规划计划高考韩国
solr相似匹配

[云计算]最小二乘法求AR模型

  2016-03-26 20:51:21

AR(Autoregressive)模型(自回归模型):用同一变量之前的表现情况来预测该变量现在或未来的表现情况,这种预测方法只与变量自己有关,而与其他变量无关,所以称作是自回归。
数学定义模型:假定AR模型是p阶的,对于一组时间序列有观测值{x[1],x[2],.....x[N]},计算t时刻x的预测值x[t],其自回归方程:
    x[t]=a[1]*x[t-1]+a[2]*x[t-2]....+a[p]*x[t-p]+u[t],1<=p<N,p<=t<=N
其中{a[1],a[2]...a[p]}是对应的参数序列,u[t]是满足N(0,σ^2)的白噪声
由该数学模型可以看出,AR(p)模型是一种线性预测,由前面的p个x观测值来预测t时刻的值,其本质类似于插值法,其目的都是为了增加有效数据。
AR模型多用于平稳时间序列的预测与拟合,给定一个时间序列,其建模步骤一般如下:
1.判断时间序列是否平稳,可以采用ACF检验、ADF单位根检验等方法。
2若时间序列平稳,则直接转3;若时间序列非平稳,则可采用差分的方法,将其转换为平稳时间序列,转3。
3.计算AR模型的参数(burg算法,最小二乘法,自相关算法等)与定阶(根据AIC准则,SC准则,FPE准则等)。
4.检验3中确定AR模型的拟合度,主要是检验残差序列是否服从N(0,σ^2)白噪声。
5.利用AR模型进行预测。
下面通过实例来分析建模过程:
现有1978-2014年全国人口的死亡率(数据来源于http://www.stats.gov.cn/tjsj/ndsj/):
[6.25 6.28 6.34 6.36 6.60 6.90 6.82 6.78

6.86 6.72 6.64 6.54 6.67 6.70 6.64 6.64

6.49 6.57 6.56 6.51 6.50 6.46 6.45 6.43

6.41 6.40 6.42 6.50 6.81 6.93 7.06 7.08

7.11 7.14 7.15 7.16 7.16]
1.判断是否为平稳序列
设mean(x),var(x)分别为序列{x}的平均值和方差,根据自相关系数ACF判断是否为平稳序列:
样本{x}的ACF计算公式是:ACF=∑(x[i]-mean(x))*(x[i+k]-mean(x))/(n*var(x)),0<=k<N,0<=i<N-k
python代码如下:
import numpy;
import math;
#计算某一个k值的ACF
def auto_relate_coef(data,avg,s2,k):
    ef=0.;
    for i in range(0,len(data)-k):
	ef=ef+(data[i]-avg)*(data[i+k]-avg);
    ef=ef/len(data)/s2;
    return ef;
#计算k从0到N-1所有ACF
def auto_relate_coefs(sample):
    efs=[];
    data=[];
    avg=numpy.mean(sample);
    s2=numpy.var(sample);
    array=sample.reshape(1,-1);
    for x in array.flat:
	data.append(x);
    for k in range(0,len(data)):
	ef=auto_relate_coef(data,avg,s2,k);
	efs.append(ef);
    return efs;
序列{1978-2014人口死亡率}自相关系数如图:

对于平稳时间序列而言,ACF系数随k值的增加衰减到0的速度比非平稳随机序列更快。基于这点可以看出序列{1978-2014人口死亡率}是平稳的。
2.AR模型参数计算与定阶
由上述的AR(p)方程可得到预测值{y[p],y[p+1]....y[N]}
y[p+1]=a[p]*x[1]+a[p-1]*x[2]....a[1]*x[p]
y[p+2]=a[p]*x[2]+a[p-1]*x[3]....a[1]*x[p+1]

.......
y[N]=a[p]*x[N-p]+a[p-1]*x[N-p+1]......a[1]*x[N-1]
将上述方程组写成矩阵形式有:
Y[N-p,1]=X[N-p,p] dotA[p,1]
其中[row,col]代表 row行col列的矩阵,dot代表矩阵点乘运算。
X的转置运算为XT,逆矩阵运算为XI
根据最小二乘的原则,得到参数的计算公式为:
A=(XT dot X)I dot XTdot Y
根据该计算公式容易得到p阶AR模型参数与预测值计算代码:
def ar_least_square(sample,p):
    matrix_x=numpy.zeros((sample.size-p,p));
    matrix_x=numpy.matrix(matrix_x);
    array=sample.reshape(sample.size);
    j=0;
    for i in range(0,sample.size-p):
	matrix_x[i,0:p]=array[j:j+p];
	j=j+1;
    matrix_y=numpy.array(array[p:sample.size]);
    matrix_y=matrix_y.reshape(sample.size-p,1);
    matrix_y=numpy.matrix(matrix_y);
    #fi为参数序列
    fi=numpy.dot(numpy.dot((numpy.dot(matrix_x.T,matrix_x)).I,matrix_x.T),matrix_y);
    matrix_y=numpy.dot(matrix_x,fi);
    matrix_y=numpy.row_stack((array[0:p].reshape(p,1),matrix_y));
    return fi,matrix_y;

知道如何计算参数还不够,还得为AR模型选择一个最优的p值,也就是定阶。
定阶一般步骤为:
(1)确定p值的上限,一般是序列长度N的比例或是lnN的倍数。
(2)在不超过max(p)值的前提下,从1开始根据某一原则确定最优p;

本例中我将p值的上限设为N/2=18,定阶准则用AIC(最小信息准则)和SC(施瓦茨准则),根据两个准则求得的估计量越小说明阶数越优。
AIC=2*p+N*ln(σ^2)    SC=p*ln(N)+N*ln(σ^2)
σ^2是观测值与预测值之间残差的方差。

def ar_aic(rss,p):
   n=rss.size;
   s2=numpy.var(rss);
   return 2*p+n*math.log(s2);

def ar_sc(rss,p):
   n=rss.size;
   s2=numpy.var(rss);
   return p*math.log(n)+n*math.log(s2);

本例的AIC和SC:


可以看到当p=18时候,AIC和SC的值均最小,p=19的时候,AIC和SC的值变化比较大。
来看下p=10、18、19时候AR(p)模型的拟合效果(红实线为观测值,蓝虚线为预测值)。
p=10:

p=18

p=19

三幅图可以直观看出p=18时候,AR(18)的拟合效果最好,几乎一模一样。AR(10)虽然效果不如AR(18),但是扰动在可接受范围内,AR(19)简直丧病,偏离太多。
3.拟合度检验
将AR方程变为下式:
u[t]=x[t]-a[1]*x[t-1]-a[2]*x[t-2]-....-a[p]*x[t-p]
若u[t]是服从N(0,σ^2)的白噪声,则可认为AR(p)是可接受的模型。
本例中用AR(18)计算出的残差u[t],平均值为1.06*10^-6,方差为4.2*10^-4
u[t]的自相关系数如图:

从该图可以看出残差近似服从N(0,σ^2),因此AR(18)是可以用来拟合和预测的。
总结:
本例采用最小二乘法计算AR模型参数,求得的AR(18)模型效果不俗,缺点在于最小二乘法涉及大量矩阵点乘运算,比较耗时。不止AR模型,还有MA,ARMA,ARIMA模型可以用来拟合和预测平稳时间序列,建模步骤基本一致,相比与AR和MA,ARMA和ARIMA的效果更好。

上一篇文章           查看所有文章
2016-03-26 20:51:19  
360图书馆 论文大全 母婴/育儿 软件开发资料 网页快照 文字转语音 购物精选 软件 美食菜谱 新闻中心 电影下载 小游戏 Chinese Culture
生肖星座解梦 三沣玩客 拍拍 视频 开发 Android开发 站长 古典小说 网文精选 搜图网 天下美图 中国文化英文 多播视频 装修知识库
2017-1-20 13:49:27
多播视频美女直播
↓电视,电影,美女直播,迅雷资源↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  软件世界网 --