首页 购物 网址 三丰软件 | 小说 美女秀 图库大全 游戏 笑话 | 下载 开发知识库 新闻 开发 图片素材
 俄罗斯方块 ↓俄罗斯方块↓ TxT小说阅读器 ↓语音阅读,小说下载,古典文学↓ 一键清除垃圾 ↓轻轻一点,清除系统垃圾↓ 图片批量下载器 ↓批量下载图片,美女图库↓ 移动开发 架构设计 编程语言 Web前端 互联网 开发杂谈 系统运维 研发管理 数据库 云计算 Android开发资料
 资讯 业界资讯 软件杂谈 编程开发 网站建设 网络观查 搜索引擎 移动应用 网站运营 网络地图 开发 移动开发 Web前端 架构设计 编程语言 互联网 数据库 系统运维 云计算 开发杂谈

## 题目描述

We all understand that an integer set is a collection of distinct integers. Now the question is: given an integer set, can you find all its addtive equations? To explain what an additive equation is, let's look at the following examples:
1+2=3 is an additive equation of the set {1,2,3}, since all the numbers that are summed up in the left-hand-side of the equation, namely 1 and 2, belong to the same set as their sum 3 does. We consider 1+2=3 and 2+1=3 the same equation, and will always output the numbers on the left-hand-side of the equation in ascending order. Therefore in this example, it is claimed that the set {1,2,3} has an unique additive equation 1+2=3.
It is not guaranteed that any integer set has its only additive equation. For example, the set {1,2,5} has no addtive equation and the set {1,2,3,5,6} has more than one additive equations such as 1+2=3, 1+2+3=6, etc. When the number of integers in a set gets large, it will eventually become impossible to find all the additive equations from the top of our minds -- unless you are John von Neumann maybe. So we need you to program the computer to solve this problem.

## 输入要求

The input data consists of several test cases.
The first line of the input will contain an integer N, which is the number of test cases.
Each test case will first contain an integer M (1<=M<=30), which is the number of integers in the set, and then is followed by M distinct positive integers in the same line.

## 输出要求

For each test case, you are supposed to output all the additive equations of the set. These equations will be sorted according to their lengths first( i.e, the number of integer being summed), and then the equations with the same length will be sorted according to the numbers from left to right, just like the sample output shows. When there is no such equation, simply output "Can't find any equations." in a line. Print a blank line after each test case.

```3
3 1 2 3
3 1 2 5
6 1 2 3 5 4 6```

## 应当输出

```1+2=3

Can't find any equations.

1+2=3
1+3=4
1+4=5
1+5=6
2+3=5
2+4=6
1+2+3=6```

```#include<iostream>
#include<algorithm>
#include <vector>
#include<string.h>
#include<string>
#include<ctype.h>
#include<cmath>
#include <queue>
#define MAXN 30000
using namespace std;
int a,flag;
int N;
struct s
{
int a;
int lenth;
} str[MAXN];
int k=0;
void input()
{
k++;
str[k].lenth=0;
int t=1;
for (int i=1; i<=N; i++)
if (flag[i]!=0) str[k].a[t++]=a[i],str[k].lenth++;
}
void dfs(int i,int sum)
{
sum+=a[i];
if (sum>a[N])
return ;
for (int j=i+1; j<=N; j++)
if (sum==a[j])
{
flag[j]=1;
input();
flag[j]=0;
break;
}
for (int j=i+1; j<N; j++)
{
flag[j]=1;
dfs(j,sum);
flag[j]=0;
}
}
bool cmp(struct s a,struct s b)
{
if(a.lenth!=b.lenth)
return a.lenth<b.lenth;
for(int i=1; i<=a.lenth; i++)
if (a.a[i]!=b.a[i])
return a.a[i]<b.a[i];
}
void solve();
int main()
{
solve();
return 0;
}
void solve()
{
int T;
cin>>T;
while (T--)
{
memset(flag,0,sizeof(flag));
memset(a,0,sizeof(a));
k=0;
cin>>N;
for (int i=1; i<=N; i++)
cin>>a[i];
sort(a+1,a+1+N);
for (int i=1; i<N-1; i++)
{
flag[i]=1;
dfs(i,0);
flag[i]=0;
}
sort(str+1,str+k+1,cmp);
if (k==0)
printf("Can't find any equations.\n\n");
else
for (int i=1; i<=k; i++)
{
int j;
printf("%d",str[i].a);
for (j=2; j<str[i].lenth; j++)
printf("+%d",str[i].a[j]);
printf("=%d\n",str[i].a[j]);
}
printf("\n");
}
}```

 此文从网络中自动搜索生成，不代表本网站赞成被搜索网站的内容或立场    查看原文